Tuesday, October 25, 2016
Publication Date: 02/1/2009
Archive >  February 2009 Issue >  New Products > 

Pulse Intros Dual-Phase Coupled Inductor
Dual-phase coupled inductor.
San Diego, CA — Pulse Engineering, a Technitrol Company, is introducing the PA2143NL surface mount coupled power bead inductor. This dual-phase coupled inductor is designed to support Volterra's VT1300 multi-phase voltage regulator which implements Voterra's patented inductor topology. The dual-staple inductor design lowers direct current resistance (DCR), and the low-loss ferrite core reduces inductor switching losses.

The result is a highly efficient voltage regulation system with a smaller footprint and a low system cost. This coupled inductor is designed for use in notebook computers where battery life, performance, and efficiency are major concerns.

The RoHS-compliant inductor has two phases magnetically coupled into a single part. Each phase has an equivalent transient inductance of 50 nanoHenries and a magnetizing inductance of 160nH minimum. Each phase is rated for 30 amps and has a DCR of 0.28 milliohms maximum. These parts can accommodate a 5A current imbalance between phases, ensuring they will operate well in less-than-suitable conditions. The low-profile 4.0mm and small footprint 11.8 x 11.4mm make it suitable for notebook CPU applications.

In a non-coupled dual-phase DC/DC converter, each phase has an independent inductor. To improve transient response, inductance must be reduced; however, this reduction causes an increase in current ripple per phase which results in a decrease in efficiency. Taking advantage of the dual-phase coupled inductor topology, two inductors are integrated on the same magnetic core and the interaction of the magnetic fields from each phase enables a 50 percent reduction in the equivalent inductance without increasing the current ripple per phase. The reduction in ripple current increases efficiency and prolongs battery life for notebook computing.

Contact: Pulse Engineering, Inc., 12220 World Trade Drive, San Diego, CA 92128 858-674-8100 fax: 858-674-8262 Web:

search login