Monday, January 23, 2017
VOLUME - NUMBER
Advertisements

Archive >  April 2013 Issue >  Front Page News > 

New NIST Microscope Measures Nanomagnets
Gaithersburg, MD — Researchers at the National Institute of Standards and Technology (NIST) have developed a new microscope able to view and measure an important but elusive property of the nanoscale magnets used in an advanced, experimental form of digital memory. The new instrument already has demonstrated its utility with initial results that suggest how to limit power consumption in future computer memories.

NIST's heterodyne magneto-optic microwave microscope, or H-MOMM, can measure collective dynamics of the electrons' spins — the basic phenomenon behind magnetism — in individual magnets as small as 100 nanometers in diameter. Nanomagnets are central components of low-power, high-speed "spintronic" computer memory, which might soon replace conventional random-access memory. Spintronics relies on electrons behaving like bar magnets, pointing in different directions to manipulate and store data, whereas conventional electronics rely on charge.

"The measurement technique is entirely novel, the capability that it has enabled is unprecedented, and the scientific results are groundbreaking," project leader Tom Silva says.

Spin Relaxation Process
As described in a new paper, NIST researchers used the H-MOMM to quantify, for the first time, the spin relaxation process — or damping — in individual nanomagnets. Spin relaxation is related to how much energy is required to switch a unit of spintronic memory between a 0 and a 1, the bits used to represent data. (See: H.T. Nembach, J.M. Shaw, C.T. Boone and T.J. Silva. "Mode- and size-dependent Landau-Lifshitz damping in magnetic nanostructures: Evidence for non-local damping." Physical Review Letters. 110, 117201. Published March 12, 2013.)

The nanomagnets used in experimental spintronic systems are too big to yield their secrets to conventional atomic physics tools yet too small for techniques used with bulk materials. Until now, researchers have been forced to measure the average damping from groups of nanomagnets. The new microscope has enabled NIST researchers to study, in detail, the ups and downs of spin excitation in individual magnets made of a layer of a nickel-iron alloy on a sapphire base.

Combining Microwave and Optical
The H-MOMM combines optical and microwave techniques. Two green laser beams are merged to generate microwaves, which excite "spin waves" — magnetic oscillations that vary with position across an individual nanomagnet, like waves in a bathtub. Polarized light from one laser is used to analyze the excitation pattern. By measuring excitation as a function of magnetic field and microwave frequency, researchers can deduce the damping of various spin waves in each nanomagnet.

Measurement and control of magnetic damping is crucial for spintronics, because the smaller the damping, the less energy is required to store a bit of data, and the less power a device requires to operate. The NIST study suggests that designing spintronic devices to have uniform spin waves could dramatically reduce the energy required to write a bit.

The new microscope is one outcome of an ongoing NIST effort to develop methods for measuring defects in magnetic nanostructures. At extremely small scales, defects dominate and can disrupt magnetic device behavior, resulting in errors in reading and writing information.

Web:
http://www.nist.org

Add your comment:

Full Name:
E-mail:
Subject:
Comment:
 



 
 
W├╝rth Elektronik eiSos Presents 2017 Product Catalog
WALDENBURG, GERMANY - Würth Elektronik eiSos, a leading European manufacturer of electronic and electromechanical components, has published its “Passive Components 2017” product catalog. Numerous products are presented on 776 pages in the categories EMC Components, Power Magnetics, Signal & Communications, and AEC-Q qualified products. The “Passive Components 2017” catalog can now be requested online at www.we-online.com/newcatalog. The same applies for the products described there: All the components listed are available from stock and samples can be obtained free of charge.

PACE Hires Daniel Montes as Latin America Regional Sales Manager
VASS, NC - PACE Worldwide is excited to announce the hiring of Daniel Montes as their Latin America Regional Sales Manager. Mr. Montes has an excellent track record and possesses a wealth of experience within the electronics production arena. He spent the last 6.5 years as a Customer Service Representative for Hisco out of El Paso and the prior 9 years as the Latin American Regional Manager for OK International. “Daniel’s arrival adds great strength to the PACE Sales Team,” said John Romanowicz, Corporate Director of Sales at PACE.
 

 
search login